skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Ralph C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. arXiv (Ed.)
    In the event of a nuclear accident, or the detonation of a radiological dispersal device, quickly locating the source of the accident or blast is important for emergency response and environmental decontamination. At a specified time after a simulated instantaneous release of an aerosolized radioactive contaminant, measurements are recorded downwind from an array of radiation sensors. Neural networks are employed to infer the source release parameters in an accurate and rapid manner using sensor and mean wind speed data. We consider two neural network constructions that quantify the uncertainty of the predicted values; a categorical classification neural network and a Bayesian neural network. With the categorical classification neural network, we partition the spatial domain and treat each partition as a separate class for which we estimate the probability that it contains the true source location. In a Bayesian neural network, the weights and biases have a distribution rather than a single optimal value. With each evaluation, these distributions are sampled, yielding a different prediction with each evaluation. The trained Bayesian neural network is thus evaluated to construct posterior densities for the release parameters. Results are compared to Markov chain Monte Carlo (MCMC) results found using the Delayed Rejection Adaptive Metropolis Algorithm. The Bayesian neural network approach is generally much cheaper computationally than the MCMC approach as it relies on the computational cost of the neural network evaluation to generate posterior densities as opposed to the MCMC approach which depends on the computational expense of the transport and radiation detection models. 
    more » « less
    Free, publicly-accessible full text available February 25, 2026
  2. Physiologically-based pharmacokinetic (PBPK) modeling is important for studying drug delivery in the central nervous system, including determining antibody exposure, predicting chemical concentrations at target locations, and ensuring accurate dosages. The complexity of PBPK models, involving many variables and parameters, requires a consideration of parameter identifiability; i.e., which parameters can be uniquely determined from data for a specified set of concentrations. We introduce the use of a local sensitivity-based parameter subset selection algorithm in the context of a minimal PBPK (mPBPK) model of the brain for antibody therapeutics. This algorithm is augmented by verification techniques, based on response distributions and energy statistics, to provide a systematic and robust technique to determine identifiable parameter subsets in a PBPK model across a specified time domain of interest. The accuracy of our approach is evaluated for three key concentrations in the mPBPK model for plasma, brain interstitial fluid and brain cerebrospinal fluid. The determination of accurate identifiable parameter subsets is important for model reduction and uncertainty quantification for PBPK models. 
    more » « less